Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability

Pickard, Ben S. and Malloy, M.P. and Porteous, D.J. and Blackwood, D.H.R. and Muir, W.J. (2005) Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 136B (1). pp. 26-32. ISSN 1552-485X

Full text not available in this repository.Request a copy from the Strathclyde author


A mother and daughter diagnosed with schizophrenia and schizophrenia co-morbid with mild learning disability, respectively, possess a balanced reciprocal translocation t(9,14)(q34.2;q13). Fluorescence in situ hybridization (FISH) with YAC, BAC, and cosmid probes indicate that the chromosome 14q13 breakpoint disrupts a large gene, NPAS3, encoding a CNS expressed transcription factor of the basic helix-loop-helix PAS (bHLH-PAS) gene family. By analogy with other members of the bHLH-PAS family, the putative truncated protein generated from the disrupted gene locus may have a dominant negative effect. The 14q13 region was previously identified by a linkage study of an inherited neurodegenerative condition, idiopathic basal ganglia calcification (IBGC or Fahr syndrome, OMIM:213600/606656), which is often co-morbid with psychosis. Sequencing of the gene in a third patient diagnosed with IBGC, schizophrenia, and mild learning disability did not reveal functional mutations.