Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Control of Lagrange point orbits using solar sail propulsion

Bookless, John and McInnes, Colin (2008) Control of Lagrange point orbits using solar sail propulsion. Acta Astronautica, 62 (2-3). pp. 159-176. ISSN 0094-5765

[img]
Preview
Text (strathprints005205)
strathprints005205.pdf
Accepted Author Manuscript

Download (695kB) | Preview

Abstract

Several missions have utilised halo orbits around the L1 and L2 previous termLagrangenext term points of the Earth-Sun system. Due to the instability of these orbits, station-keeping techniques are required to prevent escape after orbit insertion. This paper considers using solar sail propulsion to provide station-keeping at quasi-periodic orbits around L1 and L2. Stable manifolds will be identified which provide near-Earth insertion to a quasi-periodic trajectory around the libration point. The possible control techniques investigated include solar sail area variation and solar sail pitch and yaw angle variation. Hill's equations are used to model the dynamics of the problem and optimal control laws are developed to minimise the control requirements. The constant thrust available using solar sails can be used to generate artificial libration points Sunwards of L1 or Earthwards of L2. A possible mission to position a science payload Sunward of L1 will be investigated. After insertion to a halo orbit at L1, gradual solar sail deployment can be performed to spiral Sunwards along the Sun-Earth axis. Insertion -V requirements and area variation control requirements will be examined. This mission could provide advance warning of Earthbound coronal mass ejections (CMEs) responsible for magnetic storms.