Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Network power flow analysis for a high penetration of distributed generation

Thomson, M. and Infield, D.G. (2007) Network power flow analysis for a high penetration of distributed generation. IEEE Transactions on Power Systems, 22 (3). pp. 1157-1162. ISSN 0885-8950

PDF (Thomson paper for IEEE Trans on Power Systems PS)

Download (544kB) | Preview


Increasing numbers of very small generators are being connected to electricity distribution systems around the world. Examples include photovoltaics (PV) and gas-fired domestic-scale combined heat and power (micro-CHP) systems, with electrical outputs in the region of 1 to 2 kW. These generators are normally installed within consumers' premises and connected to the domestic electricity supply network (230 V single-phase in Europe, 120 V in North America). There is a growing need to understand and quantify the technical impact that high penetrations of such generators may have on the operation of distribution systems. This paper presents an approach to analyzing this impact together with results indicating that considerable penetrations of micro-generation can be accommodated in a typical distribution system.