Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Fast algorithm for rate-based optimal error protection of embedded codes

Stankovic, V. and Hamzaoui, R. and Saupe, D. (2003) Fast algorithm for rate-based optimal error protection of embedded codes. IEEE Transactions on Communications, 51 (11). pp. 1788-1795. ISSN 0090-6778

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Embedded image codes are very sensitive to channel noise because a single bit error can lead to an irreversible loss of synchronization between the encoder and the decoder. P.G. Sherwood and K. Zeger (see IEEE Signal Processing Lett., vol.4, p.191-8, 1997) introduced a powerful system that protects an embedded wavelet image code with a concatenation of a cyclic redundancy check coder for error detection and a rate-compatible punctured convolutional coder for error correction. For such systems, V. Chande and N. Farvardin (see IEEE J. Select. Areas Commun., vol.18, p.850-60, 2000) proposed an unequal error protection strategy that maximizes the expected number of correctly received source bits subject to a target transmission rate. Noting that an optimal strategy protects successive source blocks with the same channel code, we give an algorithm that accelerates the computation of the optimal strategy of Chande and Farvardin by finding an explicit formula for the number of occurrences of the same channel code. Experimental results with two competitive channel coders and a binary symmetric channel showed that the speed-up factor over the approach of Chande and Farvardin ranged from 2.82 to 44.76 for transmission rates between 0.25 and 2 bits per pixel.