Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Robust principal component analysis for micro-doppler based automatic target recognition

Clemente, C. and Miller, A.W. and Soraghan, J.J. (2013) Robust principal component analysis for micro-doppler based automatic target recognition. In: 3rd IMA conference on Mathematics in Defence, 2013-10-24.

[img]
Preview
PDF (Clemente-etal-Robust-principle-component-analysis-for-micro-doppler)
Clemente_etal_Robust_principle_component_analysis_for_micro_doppler.pdf - Preprint

Download (181kB) | Preview

Abstract

Dealing with real data it is likely that it will exhibit the presence of unexpected observations within the data which can affect the correct reduction of the representative features of a target signature. For the speciffc case of micro-Doppler based classiffcation this problem can appear in the feature selection stage. To address this problem the Robust PCA based on the Minimum Covariance Determinant (MCD) estimator is introduced. The proposed technique showed to improve the overall classiffcation accuracy.