Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Model-based sparse recovery method for automatic classification of helicopters

Clemente, Carmine and Gaglione, Domenico and Coutts, Fraser Kenneth and Li, Gang and Soraghan, John (2015) Model-based sparse recovery method for automatic classification of helicopters. In: 2015 IEEE Radar Conference (RadarCon). IEEE, pp. 1161-1165. ISBN 978-1-4799-8231-8

[img]
Preview
Text (Gaglione-etal-IEEE-IRC-2015-Model-based-sparse-recovery-method-for-automatic-classification)
Gaglione_etal_IEEE_IRC_2015_Model_based_sparse_recovery_method_for_automatic_classification.pdf
Accepted Author Manuscript

Download (294kB) | Preview

Abstract

The rotation of rotor blades of a helicopter induces a Doppler modulation around the main Doppler shift. Such a non-stationary modulation, commonly called micro-Doppler signature, can be used to perform classification of the target. In this paper a model-based automatic helicopter classification algorithm is presented. A sparse signal model for radar return from a helicopter is developed and by means of the theory of sparse signal recovery, the characteristic parameters of the target are extracted and used for the classification. This approach does not require any learning process of a training set or adaptive processing of the received signal. Moreover, it is robust with respect to the initial position of the blades and the angle that the LOS forms with the perpendicular to the plane on which the blades lie. The proposed approach is tested on simulated and real data.