Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

GNSS based passive bistatic radar for micro-doppler based classification of helicopters : experimental validation

Clemente, C. and Parry, T. and Galston, G. and Hammond, P. and Berry, C. and Ilioudis, C. and Gaglione, D. and Soraghan, J. J. (2015) GNSS based passive bistatic radar for micro-doppler based classification of helicopters : experimental validation. In: IEEE International Radar Conference 2015, 2015-05-11 - 2015-05-15.

[img]
Preview
Text (Clemente-etal-RC-2015-passive-bistatic-radar-for-micro-doppler-based-classification-helicopters)
Clemente_etal_RC_2015_passive_bistatic_radar_for_micro_doppler_based_classification_helicopters.pdf
Accepted Author Manuscript

Download (789kB) | Preview

Abstract

The capability of using illuminators of opportunity for target classification is of great interest to the radar community. In particular the alternative use of Global Navigation Satellite System (GNSS) has recently initiated a number of studies that aim to exploit this source of illumination for passive radar. We recently introduced the concept of a GNSS based passive radar for extraction of micro-Doppler signatures from helicopter rotor blades with the aim of identify this kind of targets. In this paper we present the experimental validation of our concept with real data from two different models of helicopter