Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Unbalanced whole arm translocation resulting in loss of 18p in dystonia

Nasir, Jamal and Frima, Nafsika and Pickard, Ben and Malloy, M. Pat and Zhan, Lingping and Grunewald, Richard (2006) Unbalanced whole arm translocation resulting in loss of 18p in dystonia. Movement Disorders, 21 (6). pp. 859-863. ISSN 0885-3185

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Dystonia represents a genetically and clinically heterogeneous disorder, characterized by abnormal and sustained muscle contractions and rigid postures. At least 15 different loci (DYT1-DYT15) have been identified in dystonia. Adult-onset idiopathic focal dystonia affecting specific parts of the body, such as the eye (blepharospasm), neck (cervical dystonia), and hand (writer's cramp), is mostly associated with the DYT7 locus, which was originally mapped to chromosome 18p by genomewide linkage analysis in a large family showing autosomal dominant inheritance. We have identified a family in which the mother is affected with dystonia and the son shows signs of dystonia. Using fluorescent BAC probes spanning 18p, we were able to identify a deletion in these two individuals, spanning the entire short arm of 18p. This deletion is accompanied by a centric fusion involving chromosome 14. The 18p deleted region spans 15 megabases of DNA, with a number of interesting DYT7 candidate genes, including genes involved in G-protein-coupled signaling (GNAL), cell death (CIDEA), muscle development (MYOM1 and MRLM), mitochondrial activity (NDUFV2), and neuronal function (ADYCAP1, TGIF, DAP-1, and AFG3L2).