Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Influence of cutting environments on surface integrity and power consumption of austenitic stainless steel

Munoz De Escalona, Patricia and Shokrani, A. and Newman, S.T. (2015) Influence of cutting environments on surface integrity and power consumption of austenitic stainless steel. Robotics and Computer Integrated Manufacturing, 36. pp. 60-69. ISSN 0736-5845

[img] PDF (Munoz-de-Escalona-etal-Robotics-Computer-Integrated-Manuf-2015-Influence-cutting-environments-surface-integrity-power-consumption-stainless-steel-Feb-2015)
Munoz_de_Escalona_etal_Robotics_Computer_Integrated_Manuf_2015_Influence_cutting_environments_surface_integrity_power_consumption_stainless_steel_Feb_2015.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (976kB)

Abstract

Surface roughness is a result of the cutting parameters such as: cutting speed, feed per tooth and the axial depth of cut, also the tool’s geometry, tool’s wear vibrations, etc. Moreover, the surface finish influences mechanical properties such as fatigue behaviour, wear, corrosion, lubrication and electrical conductivity and the combination of cutting parameters influence the power consumption during the machining process affecting the environment. The research reported herein is focused mainly on searching for an optimum combination of cutting parameters to obtain a low value of surface roughness and minimize energy consumption when milling an austenitic stainless steel in different cutting environments. The experiments were conducted on a Siemens 840D Bridgeport Vertical Machining Centre 610XP2. The selection of this workpiece material was based on it’s widely applications in cutlery, surgical instruments, industrial equipment and in the automotive and aerospace industry due to its high corrosion resistance and high strength characteristics. The results show that the dry cutting environment is the best option in terms of power consumption and surface roughness values to conduct the milling of an austenitic stainless steel under the selected cutting parameters.