Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Upper limb movement analysis via marker tracking with a single-camera system

Yang, Cheng and Kerr, Andy and Stankovic, Vladimir and Stankovic, Lina and Rowe, Philip (2014) Upper limb movement analysis via marker tracking with a single-camera system. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2285 - 2289. ISBN 9781479957514

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Optical motion capture systems have been widely adopted for human motion analysis in stroke rehabilitation because of real-time processing and high-accuracy features. However, these systems require a large laboratory space and multiple cameras and thus can be expensive and not transportable. In this paper, we propose a portable, cheap, single-camera motion analysis system to implement upper limb movement analysis. The proposed system consists of video acquisition, camera calibration, marker tracking, autonomous joint angle calculation, visualization, validation and classification. The validation with a state-of-the-art optical motion analysis system using Bland-Altman plot, a typical clinical measure, indicates that the proposed system can accurately capture elbow movement, trunk-tilt, and shoulder movement for diagnosis. Furthermore, the volunteers are explicitly classified into healthy and stroke groups via a support vector machine trained on statistics of the trunk-tilt and shoulder movement. Experimental results show that the proposed system can accurately capture the upper limb movement patterns, automatically classify stroke survivors using ordinal scale classification of upper limb impairment, and offer a convenient and inexpensive solution for upper limb movement analysis.