Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Upper limb movement analysis via marker tracking with a single-camera system

Yang, Cheng and Kerr, Andy and Stankovic, Vladimir and Stankovic, Lina and Rowe, Philip (2014) Upper limb movement analysis via marker tracking with a single-camera system. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2285 - 2289. ISBN 9781479957514

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Optical motion capture systems have been widely adopted for human motion analysis in stroke rehabilitation because of real-time processing and high-accuracy features. However, these systems require a large laboratory space and multiple cameras and thus can be expensive and not transportable. In this paper, we propose a portable, cheap, single-camera motion analysis system to implement upper limb movement analysis. The proposed system consists of video acquisition, camera calibration, marker tracking, autonomous joint angle calculation, visualization, validation and classification. The validation with a state-of-the-art optical motion analysis system using Bland-Altman plot, a typical clinical measure, indicates that the proposed system can accurately capture elbow movement, trunk-tilt, and shoulder movement for diagnosis. Furthermore, the volunteers are explicitly classified into healthy and stroke groups via a support vector machine trained on statistics of the trunk-tilt and shoulder movement. Experimental results show that the proposed system can accurately capture the upper limb movement patterns, automatically classify stroke survivors using ordinal scale classification of upper limb impairment, and offer a convenient and inexpensive solution for upper limb movement analysis.