Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Diode-pumped, mechanically-flexible polymer DFB laser encapsulated by glass membranes

Foucher, C. and Guilhabert, B. and Herrnsdorf, J. and Laurand, N. and Dawson, M. D. (2014) Diode-pumped, mechanically-flexible polymer DFB laser encapsulated by glass membranes. Optics Express, 22 (20). pp. 24160-24168. ISSN 1094-4087

[img]
Preview
PDF (Foucher-etal-OE-2014-Diode-pumped-mechanically-flexible-polymer)
Foucher_etal_OE_2014_Diode_pumped_mechanically_flexible_polymer.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

A diode-pumped, mechanically-flexible organic distributed-feedback laser that is fully encapsulated with ultra-thin glass is reported. The organic laser is excited by 450nm laser diode and emits at 537 nm with an oscillation threshold of 290 W/cm2. The encapsulation format of the device results in a photostability that is improved by two orders of magnitude compared to a non-encapsulated reference device while maintaining mechanical flexibility thanks to an overall device thickness below 105 μm. The laser is also wavelength-tunable between 535 nm and 545 nm by bending the ultra-thin glass structure.