Stabilised finite element methods for a bending moment formulation of the Reissner-Mindlin plate model
Barrenechea, Gabriel R. and Barrios, Tomás P. and Wachtel, Andreas (2014) Stabilised finite element methods for a bending moment formulation of the Reissner-Mindlin plate model. Calcolo. ISSN 0008-0624 (https://doi.org/10.1007/s10092-014-0120-1)
![]() |
PDF.
Filename: Barrenechea_etal_Calcolo2014_bending_moment_formulation_of_the_Reissner_Mindlin_plate_model.pdf
Accepted Author Manuscript Download (618kB) |
Abstract
This work presents new stabilised finite element methods for a bending moments formulation of the Reissner-Mindlin plate model. The introduction of the bending moment as an extra unknown leads to a new weak formulation, where the symmetry of this variable is imposed strongly in the space. This weak problem is proved to be well-posed, and stabilised Galerkin schemes for its discretisation are presented and analysed. The finite element methods are such that the bending moment tensor is sought in a finite element space constituted of piecewise linear continuos and symmetric tensors. Optimal error estimates are proved, and these findings are illustrated by representative numerical experiments.
ORCID iDs
Barrenechea, Gabriel R.
-
-
Item type: Article ID code: 50948 Dates: DateEvent6 August 2014Published18 June 2014AcceptedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 08 Jan 2015 17:47 Last modified: 01 Feb 2025 02:52 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/50948