Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices

Redif, Soydan and Weiss, Stephan and McWhirter, John G. (2015) Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices. IEEE Transactions on Signal Processing, 63 (1). pp. 81-89. ISSN 1053-587X

[img]
Preview
PDF (Redif-etal-IEEETSP-2015-Sequential-matrix-diagonalization-algorithms)
Redif_etal_IEEETSP_2015_Sequential_matrix_diagonalization_algorithms.pdf
Accepted Author Manuscript

Download (853kB) | Preview

Abstract

For parahermitian polynomial matrices, which can be used, for example, to characterise space-time covariance in broadband array processing, the conventional eigenvalue decomposition (EVD) can be generalised to a polynomial matrix EVD (PEVD). In this paper, a new iterative PEVD algorithm based on sequential matrix diagonalisation (SMD) is introduced. At every step the SMD algorithm shifts the dominant column or row of the polynomial matrix to the zero lag position and eliminates the resulting instantaneous correlation. A proof of convergence is provided, and it is demonstrated that SMD establishes diagonalisation faster and with lower order operations than existing PEVD algorithms.