Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices

Redif, Soydan and Weiss, Stephan and McWhirter, John G. (2015) Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices. IEEE Transactions on Signal Processing, 63 (1). pp. 81-89. ISSN 1053-587X

[img]
Preview
PDF (Redif-etal-IEEETSP-2015-Sequential-matrix-diagonalization-algorithms)
Redif_etal_IEEETSP_2015_Sequential_matrix_diagonalization_algorithms.pdf - Accepted Author Manuscript

Download (853kB) | Preview

Abstract

For parahermitian polynomial matrices, which can be used, for example, to characterise space-time covariance in broadband array processing, the conventional eigenvalue decomposition (EVD) can be generalised to a polynomial matrix EVD (PEVD). In this paper, a new iterative PEVD algorithm based on sequential matrix diagonalisation (SMD) is introduced. At every step the SMD algorithm shifts the dominant column or row of the polynomial matrix to the zero lag position and eliminates the resulting instantaneous correlation. A proof of convergence is provided, and it is demonstrated that SMD establishes diagonalisation faster and with lower order operations than existing PEVD algorithms.