Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices

Redif, Soydan and Weiss, Stephan and McWhirter, John G. (2015) Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices. IEEE Transactions on Signal Processing, 63 (1). pp. 81-89. ISSN 1053-587X

PDF (Redif-etal-IEEETSP-2015-Sequential-matrix-diagonalization-algorithms)
Accepted Author Manuscript

Download (853kB) | Preview


For parahermitian polynomial matrices, which can be used, for example, to characterise space-time covariance in broadband array processing, the conventional eigenvalue decomposition (EVD) can be generalised to a polynomial matrix EVD (PEVD). In this paper, a new iterative PEVD algorithm based on sequential matrix diagonalisation (SMD) is introduced. At every step the SMD algorithm shifts the dominant column or row of the polynomial matrix to the zero lag position and eliminates the resulting instantaneous correlation. A proof of convergence is provided, and it is demonstrated that SMD establishes diagonalisation faster and with lower order operations than existing PEVD algorithms.