Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices

Redif, Soydan and Weiss, Stephan and McWhirter, John G. (2015) Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices. IEEE Transactions on Signal Processing, 63 (1). pp. 81-89. ISSN 1053-587X

[img]
Preview
PDF (Redif-etal-IEEETSP-2015-Sequential-matrix-diagonalization-algorithms)
Redif_etal_IEEETSP_2015_Sequential_matrix_diagonalization_algorithms.pdf
Accepted Author Manuscript

Download (853kB) | Preview

Abstract

For parahermitian polynomial matrices, which can be used, for example, to characterise space-time covariance in broadband array processing, the conventional eigenvalue decomposition (EVD) can be generalised to a polynomial matrix EVD (PEVD). In this paper, a new iterative PEVD algorithm based on sequential matrix diagonalisation (SMD) is introduced. At every step the SMD algorithm shifts the dominant column or row of the polynomial matrix to the zero lag position and eliminates the resulting instantaneous correlation. A proof of convergence is provided, and it is demonstrated that SMD establishes diagonalisation faster and with lower order operations than existing PEVD algorithms.