Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
Aasi, J. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration (2013) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 7 (8). pp. 613-619. ISSN 1749-4885 (https://doi.org/10.1038/nphoton.2013.177)
Preview |
Text.
Filename: Aasi_etal_NP2013_Enhanced_sensitivity_LIGO_gravitational_wave_detector_using_squeezed_states_light.pdf
Accepted Author Manuscript Download (548kB)| Preview |
Abstract
Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories(1-4) is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.
ORCID iDs
Aasi, J., Lockerbie, N. A. ORCID: https://orcid.org/0000-0002-1678-3260 and Tokmakov, K. V. ORCID: https://orcid.org/0000-0002-2808-6593;-
-
Item type: Article ID code: 50723 Dates: DateEvent21 July 2013PublishedNotes: J. Aasi etal. Nature Photonics volume 7, pages 613–619 (2013). DOI: https://doi.org/10.1038/nphoton.2013.177 © 2013 Macmillan Publishers Limited. Subjects: Science > Astronomy
Science > PhysicsDepartment: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 09 Dec 2014 16:33 Last modified: 18 Jan 2025 01:41 URI: https://strathprints.strath.ac.uk/id/eprint/50723