Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques
Hossain, Md Moinul and Lu, Gang and Sun, Duo and Yan, Yong (2013) Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques. Measurement Science and Technology, 24 (7). 074010. ISSN 0957-0233 (https://doi.org/10.1088/0957-0233/24/7/074010)
Full text not available in this repository.Request a copyAbstract
This paper presents an experimental investigation, visualization and validation in the three-dimensional (3D) reconstruction of flame temperature and emissivity distributions by using optical tomographic and two-colour pyrometric techniques. A multi-camera digital imaging system comprising eight optical imaging fibres and two RGB charged-couple device (CCD) cameras are used to acquire two-dimensional (2D) images of the flame simultaneously from eight equiangular directions. A combined logical filtered back-projection (LFBP) and simultaneous iterative reconstruction and algebraic reconstruction technique (SART) algorithm is utilized to reconstruct the grey-level intensity of the flame for the two primary colour (red and green) images. The temperature distribution of the flame is then determined from the ratio of the reconstructed grey-level intensities and the emissivity is estimated from the ratio of the grey level of a primary colour image to that of a blackbody source at the same temperature. The temperature measurement of the system was calibrated using a blackbody furnace as a standard temperature source. Experimental work was undertaken to validate the flame temperature obtained by the imaging system against that obtained using high-precision thermocouples. The difference between the two measurements is found no greater than ±9%. Experimental results obtained on a laboratory-scale propane fired combustion test rig demonstrate that the imaging system and applied technical approach perform well in the reconstruction of the 3D temperature and emissivity distributions of the sooty flame.
ORCID iDs
Hossain, Md Moinul ORCID: https://orcid.org/0000-0003-4184-2397, Lu, Gang, Sun, Duo and Yan, Yong;-
-
Item type: Article ID code: 50695 Dates: DateEvent12 June 2013PublishedSubjects: Science > Physics Department: Faculty of Engineering > Chemical and Process Engineering Depositing user: Pure Administrator Date deposited: 09 Dec 2014 05:13 Last modified: 06 Jan 2025 07:11 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/50695