Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Changes in the dielectric relaxations of water in epoxy resin as a function of the extent of water ingress in carbon fibre composites

Boinard, P. and Banks, W.M. and Pethrick, R.A. (2005) Changes in the dielectric relaxations of water in epoxy resin as a function of the extent of water ingress in carbon fibre composites. Polymer, 46 (7). pp. 2218-2229. ISSN 0032-3861

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Dielectric relaxation measurements are reported over a frequency range from 10-1 to 109 Hz as a function of exposure time for an epoxy resin-carbon fibre composite, ageing at 60C in water. Investigation of the nature of the dipole relaxation of the water molecules, indicates the nature of their interaction with the polymer matrix. Analysis of the dielectric relaxation spectra allow identification of processes that can be attributed to 'free' and 'bonded' water, water in micro-cracking, located in carbon fibre disbonds and plasticizing the polymer matrix. Identification of the various types of location in which water exists was aided by use of the Ng factor from the Kirkwood-Frölich equation, which describes the constraints on free dipole ration nature imposed by the environment in which it is located. These data indicate the power of the dielectric technique for quantitative analysis of water ingress into epoxy composites.