Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Bio-CCS : Co-firing of established greenfield and novel, brownfield biomass resources under air, oxygen-enriched air and oxy-fuel conditions

Pickard, Sam and Daood, S and Nimmo, W and Lord, Richard and Pourkashanian, M (2013) Bio-CCS : Co-firing of established greenfield and novel, brownfield biomass resources under air, oxygen-enriched air and oxy-fuel conditions. Energy Procedia, 37. pp. 6062-6069. ISSN 1876-6102

[img]
Preview
PDF (Pickard-Lord-etal-EP-2013-Bio-CCS-Brownfield-biomass-resources-oxygen-enriched)
Pickard_Lord_etal_EP_2013_Bio_CCS_Brownfield_biomass_resources_oxygen_enriched.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (947kB) | Preview

Abstract

As demand for electricity and atmospheric CO2 concentrations rise technologies that reduce the environmental impact of generating electricity are sought. Within the many options a combination of co-firing of biomass and carbon capture and storage (Bio-CCS) could present a negative-emission process. This work investigates co-firing of a novel brownfield and two conventional greenfield biomass reserves with coal in oxygen-enriched conditions which may enhance the efficiency of post-combustion capture units. A 20kW furnace is used to assess combustion characteristics in a range of scenarios. Results suggest oxidant staging during oxygen-enriched co-firing can exhibit lower NO emissions while achieving high combustion efficiencies.