Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Mass spectral imaging of glycophospholipids, cholesterol, and glycophorin A in model cell membranes

Baker, Matthew J. and Zheng, Leiliang and Winograd, Nicholas and Lockyer, Nicholas P. and Vickerman, John C. (2008) Mass spectral imaging of glycophospholipids, cholesterol, and glycophorin A in model cell membranes. Langmuir, 24 (20). pp. 11803-11810. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Time of flight secondary ion mass spectrometry (ToF-SIMS) and the Langmuir-Blodgett (LB) technique have been used to create and analyze reproducible membrane mimics of the inner and outer leaflets of a cellular membrane to investigate lipid-protein and lipid-lipid interactions. Films composed of phospholipids, cholesterol and an integral membrane protein were utilized. The results show the outer membrane leaflet mimic (DPPC/cholesterol/ glycophorin A LB film) consisting of a single homogeneous phase whereas the inner membrane leaflet mimic (DPPE/cholesterol/glycophorin A LB film) displays heterogeneity in the form of two separate phases. A DPPE/cholesterol phase and a glycophorin A phase. This points to differences in membrane domain formation based upon the different chemical composition of the leaflets of a cell membrane. The reliability of the measurements was enhanced by establishing the influence of the matrix effect upon the measurement and by utlilizing PCA to enhance the contrast of the images.