Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

A new control method for the power interface in power hardware-in-the-loop simulation to compensate for the time delay

Guillo Sansano, Efren and Roscoe, Andrew and Jones, Catherine and Burt, Graeme (2014) A new control method for the power interface in power hardware-in-the-loop simulation to compensate for the time delay. In: 2014 49th International Universities Power Engineering Conference (UPEC). IEEE. ISBN 978-1-4799-6556-4

Text (C_2014_UPEC_Guillo-Sansano_PHIL_PostPrint)
Accepted Author Manuscript

Download (800kB)| Preview


    In an attempt to create a new control method for the power interface in PHIL simulations, a simulated PHIL simulation is carried out where the simulation and hardware part are modelled in MATLAB/Simulink along with the new control method. This power interface control is proposed to achieve high accuracy in PHIL simulation with closed-loop control for aerospace, marine or micro grid applications. Rather than analyzing the Real Time Simulator (RTS) data and controlling the interface using time-domain resonant controllers, the RTS data will be analyzed and controlled at the interface in the frequency domain, on a harmonic-by-harmonic and phase-by-phase basis. This should allow the RTS time delay to be compensated accurately, and removes the requirement to include additional components to compensate for the simulation delay into the simulated power system as it is not appropriate for power systems which have short transmission lines. This is extremely relevant for marine and micro grid scenarios where such inductive components may not be present.