Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Measurement-based analysis of the dynamic performance of microgrids using system identification techniques

Papadopoulos, Panagiotis N. and Papadopoulos, Theofilos A. and Crolla, Paul and Roscoe, Andrew J. and Papagiannis, Grigoris K. and Burt, Graeme M. (2015) Measurement-based analysis of the dynamic performance of microgrids using system identification techniques. IET Generation, Transmission and Distribution, 9 (1). pp. 90-103. ISSN 1751-8687

PDF (Papadopoulos-etal-GTD2014-microgrids-using-system-identification)
Papadopoulos_etal_GTD2014_microgrids_using_system_identification.pdf - Accepted Author Manuscript

Download (1MB) | Preview


The dynamic performance of microgrids is of crucial importance, due to the increased complexity introduced by the combined effect of inverter interfaced and rotating distributed generation. This paper presents a methodology for the investigation of the dynamic behavior of microgrids based on measurements using Prony analysis and state-space black-box modeling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyze the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features.