Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Rationality, irrationality, and Wilf equivalence in generalized factor order

Kitaev, Sergey and Liese, Jeff and Remmel, Jeffrey and Sagan, Bruce (2009) Rationality, irrationality, and Wilf equivalence in generalized factor order. In: 21st International Conference on Formal Power Series & Algebraic Combinatorics, 2009-07-20 - 2009-07-24.

Full text not available in this repository. Request a copy from the Strathclyde author


Let P be a partially ordered set and consider the free monoid P* of all words over P. If w,w'∈P* then w' is a factor of w if there are words u,v with w=uw'v. Define generalized factor order on P* by letting u≤w if there is a factor w' of w having the same length as u such that u≤w', where the comparison of u and w' is done componentwise using the partial order in P. One obtains ordinary factor order by insisting that u=w' or, equivalently, by taking P to be an antichain. Given u∈P*, we prove that the language F(u)={w : w≥u} is accepted by a finite state automaton. If P is finite then it follows that the generating function F(u)=Σw≥u w is rational. This is an analogue of a theorem of Björner and Sagan for generalized subword order. We also consider P=ℙ, the positive integers with the usual total order, so that ℙ* is the set of compositions. In this case one obtains a weight generating function F(u;t,x) by substituting txn each time n∈ℙ appears in F(u). We show that this generating function is also rational by using the transfer-matrix method. Words u,v are said to be Wilf equivalent if F(u;t,x)=F(v;t,x) and we can prove various Wilf equivalences combinatorially. Björner found a recursive formula for the Möbius function of ordinary factor order on P*. It follows that one always has µ(u,w)=0,±1. Using the Pumping Lemma we show that the generating function M(u)=Σw≥u |µ(u,w)| w can be irrational.