Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

An improved model for the prediction of intra-cell buckling in CFRP sandwich panels under in-plane compressive loading

Thomsen, O.T. and Banks, W.M. (2003) An improved model for the prediction of intra-cell buckling in CFRP sandwich panels under in-plane compressive loading. Composite Structures, 65 (3-4). pp. 259-268. ISSN 0263-8223

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Local instability in the form of "intra-cell buckling" or "dimpling" is a well-known failure mode in honeycomb-cored sandwich panels with very thin faces. Most work reported on the subject suggests relatively simple design formulae for the estimation of the intra-cell buckling load. It is however widely known that these classical design formulae in some cases considerably underpredict the intra-cell buckling load. In this paper a series of experimental results obtained for different CFRP/honeycomb sandwich panel configurations loaded in compression are presented. The results confirm that the "classical" design formulae provide overly conservative results. During the tests the intra-cell buckling patterns were monitored carefully, and it was observed that the hitherto assumed buckling patterns did not correspond to the experimental observations. Based on these findings a new simplified design formula is suggested, which for the investigated CFRP/honeycomb sandwich panels provides significantly more accurate predictions than the "classical" design formulae.