Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Investigation of the sympathetic tripping problem in power systems with large penetrations of distributed generation

Jennett, Kyle I. and Booth, Campbell D. and Coffele, Federico and Roscoe, Andrew J. (2015) Investigation of the sympathetic tripping problem in power systems with large penetrations of distributed generation. IET Generation Transmission and Distribution, 9 (4). pp. 379-385. ISSN 1751-8695

[img]
Preview
PDF (Jennett_sympathetic_tripping_journal_IET_jennett_PostPrint)
Jennett_sympathetic_tripping_journal_IET_jennett_PostPrint.pdf
Accepted Author Manuscript

Download (822kB)| Preview

    Abstract

    This study contains an investigation into sympathetic tripping – the undesirable disconnection of distributed generators (DGs) (in accordance with the recently-introduced G83/2 under voltage protection) when a network fault occurs in the vicinity of the DG and is not cleared quickly enough by the network protection (i.e. before the DG's under voltage protection operates). An evaluation of the severity of and proposal of solutions to the problem of sympathetic tripping on a typical UK distribution power network is presented. An inverter model (as the majority of DGs will be inverter-interfaced) that characterises the fault response of the inverter and its associated protection functions has been developed for use in simulation through exhaustive laboratory testing of a commercially-available 3 kW inverter for DG application; the observed responses have been modelled and incorporated in a power system simulation package. It is shown, when using presently-adopted DG interface and network protection settings, that the risk of sympathetic tripping is high in several future scenarios. To mitigate this risk, the impact of modifying network protection settings is evaluated. This study has two key findings – determination of the conditions at which the risk of sympathetic tripping is high and evaluation of a technique to mitigate this risk.