Introduction to partially ordered patterns
Kitaev, Sergey (2007) Introduction to partially ordered patterns. Discrete Applied Mathematics, 155 (8). pp. 929-944. ISSN 0166-218X (https://doi.org/10.1016/j.dam.2006.09.011)
Full text not available in this repository.Request a copyAbstract
We review selected known results on partially ordered patterns (POPs) that include co-unimodal, multi- and shuffle patterns, peaks and valleys ((modified) maxima and minima) in permutations, the Horse permutations and others. We provide several new results on a class of POPs built on an arbitrary flat poset, obtaining, as corollaries, the bivariate generating function for the distribution of peaks (valleys) in permutations, links to Catalan, Narayana, and Pell numbers, as well as generalizations of a few results in the literature including the descent distribution. Moreover, we discuss a q-analogue for a result on non-overlapping segmented POPs. Finally, we suggest several open problems for further research.
ORCID iDs
Kitaev, Sergey ORCID: https://orcid.org/0000-0003-3324-1647;-
-
Item type: Article ID code: 49825 Dates: DateEvent15 April 2007Published27 September 2006Published OnlineSubjects: Science > Mathematics > Electronic computers. Computer science Department: Faculty of Science > Computer and Information Sciences Depositing user: Pure Administrator Date deposited: 15 Oct 2014 10:12 Last modified: 11 Nov 2024 10:48 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/49825