Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Impulsive corona discharges for fine particles precipitation in a coaxial topology

Mermigkas, Athanasios and Timoshkin, Igor and MacGregor, Scott and Given, M and Wilson, Mark and Wang, Tao (2014) Impulsive corona discharges for fine particles precipitation in a coaxial topology. IEEE Transactions on Plasma Science, 42 (10). pp. 3089-3094. ISSN 0093-3813

PDF (Micro-Precipitation 2014)
Accepted Author Manuscript

Download (584kB)| Preview


    Air-borne micrometer and submicrometer particles produced by anthropogenic sources contaminate atmospheric air, especially in large cities where both population and industrial activities are higher leading to a reduced air quality. Recent research has pointed out particles less than 2.5 μm in diameter (PM2.5) as a potential health hazard. To address this issue, stricter legislation has been put into force to reduce PM2.5 emissions. This paper is focused on the development of an impulsive microelectrostatic precipitation technology for charging and removal of fine air-borne particles in an economically feasible way. In this paper, a compact coaxial precipitator has been developed for possible indoor air cleaning applications. High-voltage impulses together with dc voltage have been used for energization of the reactor as it has been shown to enhance the precipitation efficiency. This precipitation system has been used for removal of fumes and fine air-borne particles from ambient air. In addition to the experimental part, analytical work has been conducted to optimize the electrostatic precipitation process and to reduce its power consumption.