Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

A widely linear multichannel Wiener filter for wind prediction

Dowell, Jethro and Weiss, Stephan and Infield, David and Chandna, Swati (2014) A widely linear multichannel Wiener filter for wind prediction. In: 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014-06-29 - 2014-07-02, Australia.

[img]
Preview
PDF (Dowell-etal-SSP2014-multichannel-Wiener-filter-for-wind-prediction)
1569907367.pdf
Accepted Author Manuscript

Download (117kB) | Preview

Abstract

The desire to improve short-term predictions of wind speed and direction has motivated the development of a spatial covariance-based predictor in a complex valued multichannel structure. Wind speed and direction are modelled as the magnitude and phase of complex time series and measurements from multiple geographic locations are embedded in a complex vector which is then used as input to a multichannel Wiener prediction filter. Building on a C-linear cyclo-stationary predictor, a new widely linear filter is developed and tested on hourly mean wind speed and direction measurements made at 13 locations in the UK over 6 years. The new predictor shows a reduction in mean squared error at all locations. Furthermore it is found that the scale of that reduction strongly depends on conditions local to the measurement site.