Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

A widely linear multichannel Wiener filter for wind prediction

Dowell, Jethro and Weiss, Stephan and Infield, David and Chandna, Swati (2014) A widely linear multichannel Wiener filter for wind prediction. In: 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014-06-29 - 2014-07-02, Australia.

[img]
Preview
PDF (Dowell-etal-SSP2014-multichannel-Wiener-filter-for-wind-prediction)
1569907367.pdf
Accepted Author Manuscript

Download (117kB) | Preview

Abstract

The desire to improve short-term predictions of wind speed and direction has motivated the development of a spatial covariance-based predictor in a complex valued multichannel structure. Wind speed and direction are modelled as the magnitude and phase of complex time series and measurements from multiple geographic locations are embedded in a complex vector which is then used as input to a multichannel Wiener prediction filter. Building on a C-linear cyclo-stationary predictor, a new widely linear filter is developed and tested on hourly mean wind speed and direction measurements made at 13 locations in the UK over 6 years. The new predictor shows a reduction in mean squared error at all locations. Furthermore it is found that the scale of that reduction strongly depends on conditions local to the measurement site.