A widely linear multichannel Wiener filter for wind prediction

Dowell, Jethro and Weiss, Stephan and Infield, David and Chandna, Swati (2014) A widely linear multichannel Wiener filter for wind prediction. In: 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014-06-29 - 2014-07-02, Australia.

[thumbnail of Dowell-etal-SSP2014-multichannel-Wiener-filter-for-wind-prediction]
Preview
PDF (Dowell-etal-SSP2014-multichannel-Wiener-filter-for-wind-prediction)
1569907367.pdf
Accepted Author Manuscript

Download (117kB)| Preview

    Abstract

    The desire to improve short-term predictions of wind speed and direction has motivated the development of a spatial covariance-based predictor in a complex valued multichannel structure. Wind speed and direction are modelled as the magnitude and phase of complex time series and measurements from multiple geographic locations are embedded in a complex vector which is then used as input to a multichannel Wiener prediction filter. Building on a C-linear cyclo-stationary predictor, a new widely linear filter is developed and tested on hourly mean wind speed and direction measurements made at 13 locations in the UK over 6 years. The new predictor shows a reduction in mean squared error at all locations. Furthermore it is found that the scale of that reduction strongly depends on conditions local to the measurement site.

    ORCID iDs

    Dowell, Jethro ORCID logoORCID: https://orcid.org/0000-0002-5960-666X, Weiss, Stephan ORCID logoORCID: https://orcid.org/0000-0002-3486-7206, Infield, David and Chandna, Swati;