Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Recent advances in laser ablation modelling for asteroid deflection methods

Thiry, Nicolas and Vasile, Massimiliano (2014) Recent advances in laser ablation modelling for asteroid deflection methods. In: Proceedings of SPIE - The International Society for Optical Engineering. SPIE--The International Society for Optical Engineering., San Diego, California. ISBN 9781628412536

Full text not available in this repository. Request a copy from the Strathclyde author


Over the past few years, a series of studies have demonstrated the theoretical benefits of using laser ablation in order to mitigate the threat of a potential asteroid on a collision course with earth. Compared to other slow-push mitigation strategies, laser ablation allows for a significant reduction in fuel consumption since the ablated material is used as propellant. A precise modelling of the ablation process is however difficult due to the high variability in the physical parameters encountered among the different asteroids as well as the scarcity of experimental studies available in the literature. In this paper, we derive a new thermal model to simulate the efficiency of a laser-based detector. The useful material properties are first derived from thermochemical tables and equilibrium thermodynamic considerations. These properties are then injected in a 3D axisymetrical thermal model developed in Matlab. A temperature-dependent conduction flux is imposed on the exterior boundary condition that takes into account the balance between the incident power and the power losses due to the vaporization process across the Knudsen layer and the radiations respectively. A non-linear solver is finally used and the solution integrated over the ablation front to reconstruct the net thrust and the global mass flow. Compared to an initial 1D model, this new approach shows the importance of the parietal radiation losses in the case of a CW laser. Despite the low energy conversion efficiency, this new model still demonstrates the theoretical benefit of using lasers over more conventional low-thrust strategies.