Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

A vasopressin-like peptide in the mammalian sympathetic nervous system

Hanley, M R and Benton, H P and Lightman, S L and Todd, K and Bone, E A and Fretten, P and Palmer, S and Kirk, C J and Michell, R H (1984) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature, 309 (5965). pp. 258-61. ISSN 0028-0836

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Vasopressin was among the first mammalian hormonal peptides to be identified and to have its structure determined. Its only undisputed physiological role is as a circulating neurohypophyseal antidiuretic hormone. Other notable effects of vasopressin on peripheral tissues include contraction of vascular smooth muscle, leading to elevation of blood pressure, and activation of glycogenolysis in liver. It has long been clear that vascular smooth muscle and hepatocytes are relatively insensitive to the low concentrations of vasopressin normally present in the circulation, and the physiological significance of their responses has therefore been in doubt. We now report that a new bioactive and immunoreactive vasopressin-like peptide (VLP) is widely distributed in the sympathetic nervous system of mammals, both in the principal noradrenergic neurones of ganglia and in nerve fibres innervating peripheral tissues. In addition to other peptides described in the mammalian sympathetic nervous system, VLP must be considered as a possible mediator of the non-adrenergic responses to sympathetic activation. Moreover, many of the effects previously attributed to circulating vasopressin may be neurally evoked.