Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Reduction of wastewaters and valorisation of by-products from "Serpa" cheese manufacture using nanofiltration

Magueijo, V. and Minhalma, M. and Queiroz, D. and Geraldes, V. and Macedo, A. and de Pinho, M. N. (2005) Reduction of wastewaters and valorisation of by-products from "Serpa" cheese manufacture using nanofiltration. Water Science and Technology, 52 (10-11). pp. 393-399. ISSN 0273-1223

Full text not available in this repository. Request a copy from the Strathclyde author


Second cheese whey (SCW) is a by-product of cheese and curd cheese production that is usually not recovered and therefore contributes substantially to the negative environmental impact of the cheese manufacture plants. Membrane technology, namely nanofiltration (NF), is used in this work for the recovery of SCW organic nutrients, resulting from "Serpa" cheese and curd production. The SCW is processed by NF to recover a rich lactose fraction in the concentrate and a process water with a high salt content in the permeate. The permeation experiments were carried out in a plate and frame NF unit, where two NF membranes (NFT50 and HR-95-PP) were characterized and tested. The NF permeation experiments were performed accordingly with two different operation modes: total recirculation and concentration. In order to select the best membrane and operating pressure for the SCW fractionation, total recirculation experiments were carried out. After the membrane selection, the concentration experiments showed that the selected membrane (NFT50) at 30 bar allows a water recovery of approximately 80%, concentrating the second cheese whey nutrients approximately 5 times. Therefore, the NF operation can successfully reduce the wastewater organic load and simultaneously contribute to the valorisation of the cheese and curd cheese manufacture by-products.