Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Pseudo-Zernike based multi-pass automatic target recognition from multi-channel SAR

Clemente, Carmine and Pallotta, Luca and Proudler, Ian and De Maio, Antonio and Soraghan, John J. and Farina, Alfonso (2015) Pseudo-Zernike based multi-pass automatic target recognition from multi-channel SAR. IET Radar Sonar and Navigation, 9 (4). 457–466. ISSN 1751-8784

PDF (Clemente-etal-RSN2014-pseudo-zernike-based-multi-pass-automatic-target)
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (1MB) | Preview


The capability to exploit multiple sources of information is of fundamental importance in a battlefield scenario. Information obtained from different sources, and separated in space and time, provides the opportunity to exploit diversities to mitigate uncertainty. In this paper, we address the problem of Automatic Target Recognition (ATR) from Synthetic Aperture Radar (SAR) platforms. Our approach exploits both channel (e.g. polarization) and spatial diversity to obtain suitable information for such a critical task. In particular we use the pseudo-Zernike moments (pZm) to extract features representing commercial vehicles to perform target identification. The proposed approach exploits diversities and invariant properties of pZm leading to high confidence ATR, with limited computational complexity and data transfer requirements. The effectiveness of the proposed method is demonstrated using real data from the Gotcha dataset, in different operational configurations and data source availability.