Graphene/fly ash geopolymeric composites as self-sensing structural materials
Saafi, Mohamed and Tang, Leung and Fung, Jason and Rahman, Mahbubur and Sillars, Fiona and Liggat, John and Zhou, Xiangming (2014) Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Materials and Structures, 23 (6). 065006. ISSN 0964-1726 (https://doi.org/10.1088/0964-1726/23/6/065006)
Full text not available in this repository.Request a copyAbstract
The reduction of graphene oxide during the processing of fly ash-based geopolymers offers a completely new way of developing low-cost multifunctional materials with significantly improved mechanical and electrical properties for civil engineering applications such as bridges, buildings and roads. In this paper, we present for the first time the self-sensing capabilities of fly ash-based geopolymeric composites containing in situ reduced graphene oxide (rGO). Geopolymeric composites with rGO concentrations of 0.0, 0.1 and 0.35% by weight were prepared and their morphology and conductivity were determined. The piezoresistive effect of the rGO-geopolymeric composites was also determined under tension and compression. The Fourier transform infrared spectroscopy (FTIR) results indicate that the rGO sheets can easily be reduced during synthesis of geopolymers due to the effect of the alkaline solution on the functional groups of GO. The scanning electron microscope (SEM) images showed that the majority of pores and voids within the geopolymers were significantly reduced due to the addition of rGO. The rGO increased the electrical conductivity of the fly ash-based rGO-geopolymeric composites from 0.77 S m−1 at 0.0 wt% to 2.38 S m−1 at 0.35 wt%. The rGO also increased the gauge factor by as much as 112% and 103% for samples subjected to tension and compression, respectively.
ORCID iDs
Saafi, Mohamed, Tang, Leung, Fung, Jason, Rahman, Mahbubur, Sillars, Fiona, Liggat, John ORCID: https://orcid.org/0000-0003-4460-5178 and Zhou, Xiangming;-
-
Item type: Article ID code: 48990 Dates: DateEvent16 April 2014Published17 March 2014AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) Department: Faculty of Engineering > Civil and Environmental Engineering
Faculty of Engineering > Mechanical and Aerospace Engineering
Faculty of Science > Pure and Applied ChemistryDepositing user: Pure Administrator Date deposited: 29 Jul 2014 14:01 Last modified: 01 Dec 2024 16:50 URI: https://strathprints.strath.ac.uk/id/eprint/48990