Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

Anania, Maria Pia and Brunetti, Enrico and Wiggins, Mark and Grant, David William and Welsh, Gregor H. and Issac, Riju and Cipiccia, Silvia and Shanks, Richard and Manahan, Grace and Aniculaesei, Constantin and van der Geer, S.B. and de Loos, M. J. and Poole, M.W. and Shepherd, B. J. A. and Clarke, J.A. and Gillespie, W.A. and MacLeod, A.M. and Jaroszynski, Dino (2014) An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator. Applied Physics Letters, 104 (26). ISSN 0003-6951

[img] PDF (anania-apl14)
anania_apl14.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (985kB)

Abstract

Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.