Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients
Borggrafe, Andreas and Dachwald, Bernd (2010) Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients. In: 2nd International Symposium on Solar Sailing, ISSS 2010, 2010-07-20 - 2010-07-22.
PDF.
Filename: Borggrafe_A_Dachwald_B_Pure_Mission_performance_evaluation_for_solar_sails_using_a_refined_SRP_force_model_with_variable_optical_coefficients_Jul_2010.pdf
Preprint Download (856kB) |
Abstract
Solar sails provide significant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant. The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006, MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle, the sail’s distance from the sun (and thus the sail temperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model.
-
-
Item type: Conference or Workshop Item(Paper) ID code: 48735 Dates: DateEvent19 July 2010PublishedSubjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. AstronauticsDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 23 Jun 2014 14:39 Last modified: 27 Jul 2024 10:55 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/48735