Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Short-term spatio-temporal prediction of wind speed and direction

Dowell, Jethro and Weiss, Stephan and Hill, David and Infield, David (2014) Short-term spatio-temporal prediction of wind speed and direction. Wind Energy, 17 (12). pp. 1945-1955. ISSN 1095-4244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper aims to produce a low-complexity predictor for the hourly mean wind speed and direction from 1 to 6 h ahead at multiple sites distributed around the UK. The wind speed and direction are modelled via the magnitude and phase of a complex-valued time series. A multichannel adaptive filter is set to predict this signal on the basis of its past values and the spatio-temporal correlation between wind signals measured at numerous geographical locations. The filter coefficients are determined by minimizing the mean square prediction error. To account for the time-varying nature of the wind data and the underlying system, we propose a cyclo-stationary Wiener solution, which is shown to produce an accurate predictor. An iterative solution, which provides lower computational complexity, increased robustness towards ill-conditioning of the data covariance matrices and the ability to track time-variations in the underlying system, is also presented. The approaches are tested on wind speed and direction data measured at various sites across the UK. Results show that the proposed techniques are able to predict wind speed as accurately as state-of-the-art wind speed forecasting benchmarks while simultaneously providing valuable directional information.