Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Short-term spatio-temporal prediction of wind speed and direction

Dowell, Jethro and Weiss, Stephan and Hill, David and Infield, David (2014) Short-term spatio-temporal prediction of wind speed and direction. Wind Energy, 17 (12). pp. 1945-1955. ISSN 1095-4244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper aims to produce a low-complexity predictor for the hourly mean wind speed and direction from 1 to 6 h ahead at multiple sites distributed around the UK. The wind speed and direction are modelled via the magnitude and phase of a complex-valued time series. A multichannel adaptive filter is set to predict this signal on the basis of its past values and the spatio-temporal correlation between wind signals measured at numerous geographical locations. The filter coefficients are determined by minimizing the mean square prediction error. To account for the time-varying nature of the wind data and the underlying system, we propose a cyclo-stationary Wiener solution, which is shown to produce an accurate predictor. An iterative solution, which provides lower computational complexity, increased robustness towards ill-conditioning of the data covariance matrices and the ability to track time-variations in the underlying system, is also presented. The approaches are tested on wind speed and direction data measured at various sites across the UK. Results show that the proposed techniques are able to predict wind speed as accurately as state-of-the-art wind speed forecasting benchmarks while simultaneously providing valuable directional information.