Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition

Alkhateeb, Jawad H. and Pauplin, Olivier and Ren, Jinchang and Jiang, Jianmin (2011) Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition. Knowledge Based Systems, 24 (5). pp. 680-688. ISSN 0950-7051 (https://doi.org/10.1016/j.knosys.2011.02.008)

[thumbnail of HMM_and_DBN_v3]
Preview
PDF. Filename: HMM_and_DBN_v3.pdf
Preprint

Download (522kB)| Preview

Abstract

This paper presents a comparative study of two machine learning techniques for recognizing handwritten Arabic words, where hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) were evaluated. The work proposed is divided into three stages, namely preprocessing, feature extraction and classification. Preprocessing includes baseline estimation and normalization as well as segmentation. In the second stage, features are extracted from each of the normalized words, where a set of new features for handwritten Arabic words is proposed, based on a sliding window approach moving across the mirrored word image. The third stage is for classification and recognition, where machine learning is applied using HMMs and DBNs. In order to validate the techniques, extensive experiments were conducted using the IFN/ENIT database which contains 32,492 Arabic words. Experimental results and quantitative evaluations showed that HMM outperforms DBN in terms of higher recognition rate and lower complexity.

ORCID iDs

Alkhateeb, Jawad H., Pauplin, Olivier, Ren, Jinchang ORCID logoORCID: https://orcid.org/0000-0001-6116-3194 and Jiang, Jianmin;