Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Offline handwritten Arabic cursive text recognition using hidden markov models and re-ranking

Alkhateeb, Jawad H. and Ren, Jinchang and Jiang, Jianmin and Al-Muhtaseb, Husni (2011) Offline handwritten Arabic cursive text recognition using hidden markov models and re-ranking. Pattern Recognition Letters, 32 (8). pp. 1081-1088. ISSN 0167-8655

[img]
Preview
PDF (Jawad-PRL)
Jawad_PRL.pdf
Preprint

Download (311kB) | Preview

Abstract

Recognition of handwritten Arabic cursive texts is a complex task due to the similarities between letters under different writing styles. In this paper, a word-based off-line recognition system is proposed, using Hidden Markov Models (HMMs). The method employed involves three stages, namely preprocessing, feature extraction and classification. First, words from input scripts are segmented and normalized. Then, a set of intensity features are extracted from each of the segmented words, which is based on a sliding window moving across each mirrored word image. Meanwhile, structure-like features are also extracted including number of subwords and diacritical marks. Finally, these features are applied in a combined scheme for classification. Intensity features are used to train a HMM classifier, whose results are re-ranked using structure-like features for improved recognition rate. In order to validate the proposed techniques, extensive experiments were carried out using the IFN/ENIT database which contains 32,492 handwritten Arabic words. The proposed algorithm yields superior results of improved accuracy in comparison with several typical methods.