Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

Planar nanophotonic devices and integration technologies

De La Rue, Richard M. and Sorel, Marc and Samarelli, Antonio and Velha, Philippe and Strain, Michael John and Johnson, Nigel P. and Sharp, Graham J. and Rahman, Faiz Ur and Khokhar, Ali Z. and Macintyre, Douglas S. and McMeekin, Scott G. and Lahiri, Basudev (2012) Planar nanophotonic devices and integration technologies. Proceedings of SPIE - The International Society for Optical Engineering, 8414. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices.