Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

Spontaneous parametric fluorescence in SOI integrated micoresonators

Azzini, Stefano and Grassani, Davide and Liscidini, Marco and Galli, Matteo and Gerace, Dario and Sorel, Marc and Strain, Michael John and Velha, Philippe and Bajoni, Daniele (2013) Spontaneous parametric fluorescence in SOI integrated micoresonators. Proceedings of SPIE - The International Society for Optical Engineering, 8915. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Four-wave mixing can be stimulated or occur spontaneously: the latter effect, also known as parametric fluorescence, can be explained only in the framework of a quantum theory of light, and it is at the basis of many protocols to generate nonclassical states of the electromagnetic field. In this work we report on our experimental study of spontaneous four wave mixing in microring resonators and photonic crystal molecules integrated on a silicon on insulator platform. We find that both structures are able to generate signal and idler beams in the telecom band, at rates of millions of photons per second, under sub-mW pumping. By comparing the experiments on the two structures we find that the photonic molecule is an order of magnitude more efficient than the ring resonator, due to the reduced mode volume of the individual resonators.