Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Spontaneous parametric fluorescence in SOI integrated micoresonators

Azzini, Stefano and Grassani, Davide and Liscidini, Marco and Galli, Matteo and Gerace, Dario and Sorel, Marc and Strain, Michael John and Velha, Philippe and Bajoni, Daniele (2013) Spontaneous parametric fluorescence in SOI integrated micoresonators. Proceedings of SPIE - The International Society for Optical Engineering, 8915. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Four-wave mixing can be stimulated or occur spontaneously: the latter effect, also known as parametric fluorescence, can be explained only in the framework of a quantum theory of light, and it is at the basis of many protocols to generate nonclassical states of the electromagnetic field. In this work we report on our experimental study of spontaneous four wave mixing in microring resonators and photonic crystal molecules integrated on a silicon on insulator platform. We find that both structures are able to generate signal and idler beams in the telecom band, at rates of millions of photons per second, under sub-mW pumping. By comparing the experiments on the two structures we find that the photonic molecule is an order of magnitude more efficient than the ring resonator, due to the reduced mode volume of the individual resonators.