Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A highly scalable, rapidly-reconfigurable, multicasting-capable, 100-Gbit/s photonic switched interconnect based upon OTDM technology

Deng, K.-L. and Runser, R.J. and Toliver, P. and Glesk, Ivan and Prucnal, P.R. (2000) A highly scalable, rapidly-reconfigurable, multicasting-capable, 100-Gbit/s photonic switched interconnect based upon OTDM technology. Journal of Lightwave Technology, 18 (12). pp. 1892-1904. ISSN 0733-8724

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe an ultrafast photonic switched interconnect based upon technologies developed for optical time division multiplexing (OTDM). The system uses a time-interleaved broadcast-and-select star architecture that is functionally equivalent to a crossbar switch. The interconnect offers full connectivity and low uniform latency among the input and output ports. The enabling technologies include ultrafast gated time slot tuners and all-optical demultiplexers. By utilizing these advanced optical technologies, it is possible to construct a highly scalable, rapidly reconfigurable, ultra-high-speed switch with performance beyond the capacity of current electronics. In the experimental demonstration, we constructed an interconnect with a peak bit rate of 100 Gh/s and the capability of connecting 16 OTDM ports. The system successfully demonstrated error-free operation of 100 Gb/s-multiplexing and demultiplexing in addition to rapid inter-channel switching capability on the order of the single channel bit period. The system also supports multicasting functions among many nodes. To scale the system to accommodate a large number of ports, we provide an analysis of the coherent crosstalk requirements through the network to show the potential to support hundreds of ports within practical constraints of the optical components. We believe that this system offers an approach to meet the demands of high bandwidth and fast switching capability required in current high-speed lightwave networks.