Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Power oscillation damping using wind turbines with energy storage systems

Xu, Guoyi and Xu, Lie and Morrow, D John (2013) Power oscillation damping using wind turbines with energy storage systems. IET Renewable Power Generation, 7 (5). pp. 449-457. ISSN 1752-1416

Full text not available in this repository. Request a copy from the Strathclyde author


Wind turbines are increasingly being expected to provide oscillation damping to the power system to which they are connected. In this study, power oscillation damping control of variable speed wind turbines is studied. An energy storage device with a bidirectional DC/DC converter connected to the DC link of a fully rated converter-based wind turbine is proposed. As system oscillation is often induced by an AC fault, it is desirable for wind turbines to ride through the fault first and then provide a damping effect. During the fault period, the energy storage system (ESS) is controlled to assist the fault ride through process, and the line side converter (LSC) is controlled to provide AC voltage support in accordance with the grid code. Methods based on regulating the active power output of the ESS and modulation of reactive power output of the LSC are proposed so as to damp the oscillations of the power system. Matlab/Simulink simulations based on a simplified Irish power system demonstrate the performance of the ESS and LSC during fault periods and validate the damping effect of the proposed system.