Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

A computational fluid dynamics model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump

Iannetti, Aldo and Stickland, Matthew and Dempster, William (2014) A computational fluid dynamics model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228 (5). pp. 574-584. ISSN 0957-6509

[img] Microsoft Word (Iannetti A et al - Pure - A CFD model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump FINAL DRAFT Apr 2014)
Iannetti_A_et_al_Pure_A_CFD_model_to_evaluate_the_inlet_stroke_performance_of_a_positive_displacement_reciprocating_plunger_pump_FINAL_DRAFT_Apr_2014.docx
Preprint

Download (69kB)
    [img] Microsoft Word (Iannetti A et al - Pure - A CFD model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump FIGURES Apr 2014)
    Iannetti_A_et_al_Pure_A_CFD_model_to_evaluate_the_inlet_stroke_performance_of_a_positive_displacement_reciprocating_plunger_pump_FIGURES_Apr_2014.docx
    Preprint

    Download (12MB)

      Abstract

      A computational fluid dynamics model of the middle chamber of a triplex positive displacement reciprocating pump is presented to assess the feasibility of a transient numerical method to investigate the performance of the pump throughout the 180 of crank rotation of the inlet stroke. The paper also investigates, by means of computational fluid dynamics, the pressure drop occurring in the pump chamber during the first part of the inlet stroke in order to gain a better understanding of the mechanisms leading to cavitation. The model includes the compressibility of the working fluid and the lift of the inlet valve as a function of the pressure field on the inlet valve surfaces. It also takes into account the valve spring preload in the overall balance of forces moving the valve. Simulation of the valve motion was achieved by providing the solver with two user-defined functions. The plunger lift–time history was defined by the crank diameter and connecting rod length. This paper will demonstrate the feasibility and reasonable accuracy of the method adopted by comparison with experimental data.