Nanosecond colloidal quantum dot lasers for sensing
Guilhabert, B. and Foucher, C. and Haughey, A-M. and Mutlugun, E. and Gao, Y. and Herrnsdorf, J. and Sun, H.D. and Demir, H.V. and Dawson, M.D. and Laurand, N. (2014) Nanosecond colloidal quantum dot lasers for sensing. Optics Express, 22 (6). pp. 7308-7319. ISSN 1094-4087 (https://doi.org/10.1364/OE.22.007308)
Preview |
Text.
Filename: Guilhabert_etal_OE2014_nanosecond_colloidal_quantum_dot_lasers.pdf
Final Published Version Download (3MB)| Preview |
Abstract
Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors’ knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm2 for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water.
ORCID iDs
Guilhabert, B. ORCID: https://orcid.org/0000-0002-3986-8566, Foucher, C. ORCID: https://orcid.org/0000-0002-3229-7502, Haughey, A-M., Mutlugun, E., Gao, Y., Herrnsdorf, J. ORCID: https://orcid.org/0000-0002-3856-5782, Sun, H.D., Demir, H.V., Dawson, M.D. ORCID: https://orcid.org/0000-0002-6639-2989 and Laurand, N. ORCID: https://orcid.org/0000-0003-0486-4300;-
-
Item type: Article ID code: 47370 Dates: DateEvent21 March 2014Published7 March 2014AcceptedSubjects: Science > Physics > Optics. Light Department: Faculty of Science > Physics > Institute of Photonics
Faculty of Science > Physics
Faculty of Engineering > Biomedical EngineeringDepositing user: Pure Administrator Date deposited: 08 Apr 2014 09:07 Last modified: 15 Jan 2025 01:49 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/47370