Optimization of voltage doublers for energy harvesting applications

Roscoe, Nina and Judd, Martin (2013) Optimization of voltage doublers for energy harvesting applications. IEEE Sensors Journal, 13 (12). pp. 4904-4911. ISSN 1530-437X

[thumbnail of Optimization of Voltage Doublers for Energy Harvesting Applications_final submission]
PDF. Filename: Optimization_of_Voltage_Doublers_for_Energy_Harvesting_Applications_final_submission.pdf
Accepted Author Manuscript

Download (408kB)| Preview


Energy harvesting is increasingly enabling the expansion of wireless sensor networks in challenging applications by replacing batteries in low power sensors. Many forms of energy harvester suffer from low output voltage which can be partially compensated for by the use of a Cockcroft-Walton voltage doubler ahead of a dc-dc converter. Impedance matching of energy harvesters is critical to achieving high output power per unit volume. This paper explores optimum impedance match for an energy harvester with a voltage doubler and dc-dc converter. Formulae are derived, and experimentally confirmed, which calculate optimum impedance match between the harvester and a load, and calculate voltage at the input to the dc-dc converter for a given wireless sensor power consumption. Further, the formula for optimum impedance match is validated against independently published results.


Roscoe, Nina ORCID logoORCID: https://orcid.org/0000-0001-6315-0995 and Judd, Martin;