Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells

Jeorrett, Abigail H and Neale, Steven L and Massoubre, David and Gu, Erdan and Henderson, Robert K and Millington, Owain and Mathieson, Keith and Dawson, Martin D (2014) Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Optics Express, 22 (2). pp. 1372-1380. ISSN 1094-4087

[img]
Preview
PDF (oe-22-2-1372)
oe_22_2_1372.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.