Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Domestic electricity use : a high-resolution energy demand model

Richardson, Ian and Thomson, Murray and Infield, David and Clifford, Conor (2010) Domestic electricity use : a high-resolution energy demand model. Energy and Buildings, 42 (10). pp. 1878-1887. ISSN 0378-7788

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The pattern of electricity use in an individual domestic dwelling is highly dependent upon the activities of the occupants and their associated use of electrical appliances. This paper presents a high-resolution model of domestic electricity use that is based upon a combination of patterns of active occupancy (i.e. when people are at home and awake), and daily activity profiles that characterise how people spend their time performing certain activities. One-min resolution synthetic electricity demand data is created through the simulation of appliance use; the model covers all major appliances commonly found in the domestic environment. In order to validate the model, electricity demand was recorded over the period of a year within 22 dwellings in the East Midlands, UK. A thorough quantitative comparison is made between the synthetic and measured data sets, showing them to have similar statistical characteristics. A freely downloadable example of the model is made available and may be configured to the particular requirements of users or incorporated into other models.