Ionic liquids at electrified interfaces
Fedorov, Maxim and Kornyshev, Alexei A. (2014) Ionic liquids at electrified interfaces. Chemical Reviews, 114 (5). pp. 2978-3036. (https://doi.org/10.1021/cr400374x)
PDF.
Filename: Fedorov_Kornyshev_CR_2014_Ionic_liquids_at_electrified_interfaces.pdf
Accepted Author Manuscript Download (13MB) |
Abstract
Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules.
-
-
Item type: Article ID code: 47256 Dates: DateEvent4 March 2014PublishedNotes: Final version of the paper submitted for publication after revision Subjects: Science > Physics
Science > ChemistryDepartment: Faculty of Science > Physics
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 25 Mar 2014 11:01 Last modified: 18 Jan 2025 06:57 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/47256