Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A cyclo-stationary complex multichannel wiener filter for the prediction of wind speed and direction

Dowell, Jethro and Weiss, Stephan and Hill, David and Infield, David (2013) A cyclo-stationary complex multichannel wiener filter for the prediction of wind speed and direction. In: 21st European Signal Processing Conference, 2013-09-09 - 2013-09-13.

[img]
Preview
PDF (dowell13c)
dowell13c.pdf
Final Published Version

Download (857kB) | Preview

Abstract

This paper develops a linear predictor for application to wind speed and direction forecasting in time and across different sites. The wind speed and direction are modelled via the magnitude and phase of a complex-valued time-series. A multichannel adaptive filter is set to predict this signal, based on its past values and the spatio-temporal correlation between wind signals measured at numerous geographical locations. The time-varying nature of the underlying system and the annual cycle of seasons motivates the development of a cyclo-stationary Wiener filter, which is tested on hourly mean wind speed and direction data from 13 weather stations across the UK, and shown to provide an improvement over both stationary Wiener filtering and a recent auto-regressive approach.