Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Bias correction in the estimation of dynamic panel models in corporate finance

Zhou, Qing and Faff, Robert and Alpert, Karen (2014) Bias correction in the estimation of dynamic panel models in corporate finance. Journal of Corporate Finance, 25. pp. 494-513. ISSN 0929-1199

Full text not available in this repository.Request a copy from the Strathclyde author


Dynamic panel models play an increasingly important role in numerous areas of corporate finance research, and a variety of (biased) estimation methods have been proposed in the literature. The biases inherent in these estimation methods have a material impact on inferences about corporate behavior, especially when the empirical model is misspecified. We propose a bias-corrected global minimum variance (GMV) combined estimation procedure to mitigate this estimation problem. We choose the capital structure speed of adjustment (SOA) setting to illustrate the proposed method using both simulated and actual empirical corporate finance data. The GMV estimator non-trivially reduces bias and hence meaningfully increases the reliability of inferences based on parameter estimates. This method can be readily applied to many other corporate finance contexts.