Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Development of a small-scale generator set model for local network voltage and frequency stability analysis

Quinonez-Varela, G. and Cruden, A.J. (2007) Development of a small-scale generator set model for local network voltage and frequency stability analysis. IEEE Transactions on Energy Conversion, 22 (2). pp. 368-375. ISSN 0885-8969

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The integration of numerous small-scale generators into existing local networks (e.g., a microgrid) is anticipated to impact their operation, control, and protection. In particular, maintaining voltage and frequency stability within the defined limits is more onerous and requires investigation. The effect of protective limiters and characteristics such as the genuine inertia of the generation set must be taken into consideration in stability studies in order to accurately represent the overall dynamic characteristics of local distributed generators. This paper focuses on three fundamental aspects: 1) the development of a reciprocating engine/generator set model; 2) the laboratory testing of an experimental test rig; and 3) the influence of a volts-per-hertz ratio (volts-per-hertz ratio) limiter on the generator dynamic response. The experimental procedures used to determine the genuine inertia of the test rig are described and the system responses under different scenarios are used to validate the developed model. This emphasizes the significance of excitation protective limiters such as volts-per-hertz ratio, during the stability analysis.