Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Optimised cross-slot microdevices for homogeneous extension

Galindo-Rosales, Francisco J and Oliveira, Monica and Alves, M.A. (2014) Optimised cross-slot microdevices for homogeneous extension. RSC Advances, 4 (15). pp. 7799-7804. ISSN 2046-2069

[img] PDF (Oliveira-etal-RSCAdv-2014-Optimized-cross-slot-microdevices-for-homogeneous-extension-2014)
Oliveira_etal_RSCAdv_2014_Optimized_cross_slot_microdevices_for_homogeneous_extension_2014.pdf
Accepted Author Manuscript

Download (3MB)

Abstract

Microfluidic cross-slot devices can generate wide regions of vorticity-free strong extensional flow near the stagnation point, resulting in large extensional deformation and orientation of the microstructure of complex fluids, with possible applications in extensional rheometry and hydrodynamic stretching of single cells or molecules. Standard cross-slot devices, with sharp or rounded corners, generate a flow field with a non-homogeneous extension rate that peaks at the stagnation point, but decays significantly with distance from the stagnation point. To circumvent this limitation, an optimized shape cross-slot extensional rheometer (OSCER) was designed numerically and shown to generate constant extension rate over a wide region of the in- and out-flowing symmetry planes [Haward et al., Phys. Rev. Lett., 2012, 109, 128301]. Since the OSCER device was based on a 2D flow approximation, the practical implementation requires a large aspect ratio, which cannot be reproduced by standard soft-lithography techniques. Here, we propose a set of new designs for optimized cross-slot geometries, considering aspect ratios of order 1 and different lengths of the homogeneous inlet/outlet-flow regions. Micro-particle image velocimetry experiments were carried out in order to validate the flow kinematics, and the velocity profiles were found to be linear along the in- and outflow centrelines in good quantitative agreement with the numerical predictions.